Real-Time Convex Optimization . . . -- Recent advances that make it easier to design and implement algorithms
نویسنده
چکیده
1053-5888/10/$26.00©2010IEEE C onvex optimization has been used in signal processing for a long time to choose coefficients for use in fast (linear) algorithms, such as in filter or array design; more recently, it has been used to carry out (nonlinear) processing on the signal itself. Examples of the latter case include total variation denoising, compressed sensing, fault detection, and image classification. In both scenarios, the optimization is carried out on time scales of seconds or minutes and without strict time constraints. Convex optimization has traditionally been considered computationally expensive, so its use has been limited to applications where plenty of time is available. Such restrictions are no longer justified. The combination of dramatically increased computing power, modern algorithms, and new coding approaches has delivered an enormous speed increase, which makes it possible to solve modest-sized convex optimization problems on microsecond or millisecond time scales and with strict deadlines. This enables real-time convex optimization in signal processing.
منابع مشابه
Low latency IIR digital filter design by using metaheuristic optimization algorithms
Filters are particularly important class of LTI systems. Digital filters have great impact on modern signal processing due to their programmability, reusability, and capacity to reduce noise to a satisfactory level. From the past few decades, IIR digital filter design is an important research field. Design of an IIR digital filter with desired specifications leads to a no convex optimization pr...
متن کاملOPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملLinear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization
In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010